Thursday, 5 November 2015

Chapter 1: Form 4_Additional Mathematics_Functions


FUNCTION NOTATION

f:x |----> 2x can be written as f(x) = 2x

Example 1
Given function f:x |---> 3x-2, find the
(a) Image of -1
(b) object which has the image 4

Answer
(a) Image of -1, which is mean that -1 is a object. So substitute "x" as a -l.  
f:x |---> 3x-2
f(x) = 3x-2
f(-1) = 3(-1)-2 substitute x = -1
f(-1) = -5, so the image of -1 is -5
(b)  object which has the image 4. (number 4 is a image)
3x-2 = 4
3x = 4+2
3x = 6
x = 6/3
x = 2, so the object of 4 is 2


Example 2



The arrow diagram represents a function f:x ---- > px + q/x, x ≠ 0.

Find

(a) the values of p and of q.

(b) the image of 2 under the function


Answer

(a) the values of p and of q.

** Substitute the image and object into the equation

** X is the object, f(x) image

Object            Image

1                      -2

4                      7


f(x) = px + q/x

Equation 1                            Equation 2

-2 = p(1) + q/1                    7 = p(4) + q/4

p + q = -2                           4p + q/4 = 7

                                           16p + q = 28


p + q = -2       ------------ 1


16p + q = 28    ------------2

q-q = 0

So equation 1- equation 2

p-16p = -2 – 28                               So, p + q = -2

-15p = -30                                        2 + q = -2

p = 2                                                q = -4

(b) the image of 2 under the function

f(x) = px + q/x

p = 2, q = -4

f(x) = 2x -4/x

** Image of 2? Means 2 is the object and the object is the x

f(x) = 2x -4/x

2(2) – 4/2 = 2

So the image is 2.


Example 3:



The arrow diagram represents a function 
f:x |-----> x2 +bx + c, find the values of b and c.




Answer
f(x) = x2 +bx + c

** Substitute the image and object into the equation

** X is the object, f(x) image

Object            Image

-1                    -6

2                      6

f(x) = x2 +bx + c

Equation 1                                        Equation 2

-6 = (-1)2 +b(-1) + c                             6 = (2)2 +b(2) + c   

1 – b + c = -6                                        4 + 2b + c = 6

-b + c = -7                                            2b + c = 2

b – c = 7
b – c = 7        -------------1

2b + c = 2      -------------2

-c + c = 0

So: Eq 1 + Eq 2

b + 2b = 7 + 2                      When b = 3

3b = 9                                   So: b – c = 7

b = 9/3                                  3 – c = 7


b = 3                                       c = -4


COMPOSITE FUNCTIONS

Example 1
The functions of f and g are defined as f:x |----> 3x +1 and 
g:x |----> x/2
find
(a) the composite functions of gf and the value of gf(4),
(b) the composite function fg and the value of fg(4).

Answer
(a) Given f:x |----> 3x +1 and g:x |----> x/2
so f(x) = x +1 and g(x) = x/2

Solution 1
gf(x) = g(f(x))
First, substitute f(x) = 3x +1
gf(x) = g(3x+1), since g(x) = x/2, so the "x" of the g(x) will be 3x+1.
 gf(x) = g(3x+1)
gf(x) = (3x+1)/2
gf(4) = [(3(4) + 1)/2]
gf(4) = 13/2#

Solution 2
gf(x) = g(f(x))
gf(x) = g(3x+1)
Given g(x) = x/2
so substitute x of the g(x) = 3x +1
g(x) = x/2
gf(x) = (3x+1)/2
gf(4) = (3[4]+1)/2
gf(4) = 13/2#

(b) f(x) = 3x +1 and g(x) = x/2
fg(x) = ?

Solution 1
fg(x) = f(g(x)), first, substitute g(x) = x/2
fg(x) = f(x/2)
Given f(x) = 3x +1, replace x = x/2
 so fg(x) = 3(x/2) + 1
fg(4) = 3(4/2) + 1 = 7

Solution 2
fg(x) = f(g(x)) , g(x) = x/2
fg(x) = f(x/2)
Given f(x) = 3x +1
So: fg(x) = 3(x/2) + 1
fg(4) = 3(4/2) + 1 = 7#


INVERSE FUNCTION

Example 1

The function f is defined as f:x |---- > 2x-5. Find

(a) f-1(3)

(b) f-1(x).

Answer

Given f(x) = 2x-5

*First step: Let find inverse function of the f which is f-1(x), the substitute x=3

How to find inverse function? It is just let y = 2x-5, then let x be alone and change the “y” to “x”.

y = 2x-5

2x = y +5

X = (y+5)/2

f-1(x) = (x+5)/2#

So the inverse of f is (x+5)/2. So the question (b) is answered. So for the question (a), just substitute x =3

f-1(x) = (x+5)/2

f-1(3) = (3+5)/2

f-1(3) = 4#

Example 2

f:x |---- > (x-3)/(2x+1) and g: x |---- > 4x. Find

(a) f-1(x)         (b) f-1g(x)                  (c) gf-1(x)

Answer
(a) f-1(x)
(b) f-1g(x)
(c) gf-1(x)
Given f(x) = (x-3)/(2x+1)
Y = (x-3)/(2x+1)
Y(2x+1) = x-3
2xy + y = x-3
2xy – x = -3 –y
x(2y-1) = -3-y
x = (-3-y)/(2y-1)
f-1(x) = (-3-x)/(2x-1)
or
f-1(x) = -(3+x)/(2x-1)
f-1 (x) = (3 + x)/ (-2x + 1)
f-1 (x) = (x+3)/(1-2x)#
f-1 (x) = (x+3)/(1-2x)
Given g(x) = 4x
f-1g(x)
so f-1(4x), *Substitute x of f-1 = 4x
f-1(4x)
[4x+3]/ [1-2(4x)]
= [4x+3]/[1-8x]
So: f-1g(x) = [4x+3]/[1-8x]#
f-1 (x) = (x+3)/(1-2x)
gf-1(x)
g[(x+3)/(1-2x)]
*Substitute x of g = (x+3)/(1-2x)
g[(x+3)/(1-2x)]
4[(x+3)/(1-2x)]
= (4x+12)/(1-2x)
So: gf-1(x) = (4x+12)/(1-2x)
Example 3

Given f(x) = (x+3)/3 and f-1 (x) = px + q. Find

(a) the values of p and q,

(b) the value  of f-1(-3)

Answer


(a) the values of p and q
(b) the value  of f-1(-3)
f(x) = (x+3)/3
y = (x+3)/3
3y = x+3
x = 3y -3
f-1(x) = 3x-3
Given f-1 (x) = px + q
*Compare the both equation
3x-3 = px + q
3x = px           -3 = q
p = 3           q = -3
f-1(x) = 3x-3
f-1(-3)
So: f-1(-3) = 3(-3) – 3
f-1(-3) = -12#

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...